If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-t^2-t+12=t0
We move all terms to the left:
-t^2-t+12-(t0)=0
We add all the numbers together, and all the variables
-1t^2-2t+12=0
a = -1; b = -2; c = +12;
Δ = b2-4ac
Δ = -22-4·(-1)·12
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{13}}{2*-1}=\frac{2-2\sqrt{13}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{13}}{2*-1}=\frac{2+2\sqrt{13}}{-2} $
| -t^2+2=t0 | | -t^2+2=t+12 | | 3x−4=6+5x | | 3^a=4 | | 7+2=-3(4x-3) | | 1.4^x=3 | | 3(x+8)+5=29 | | 2^x²-⁵x=64 | | -13+28=-5(x+5) | | 8(x+4)-6=26 | | -14(3a+6)=12(6-4a+12) | | 0.5x-0.25=1 | | -14(3a+6)=12(6-4a+12 | | -8+6(3u-10)=u | | 15+30=-5(9x-9) | | z=36z^2+2z+106z2+2z+10 | | -1+c=-9+2c | | X/2-x-4/6=5/3. | | 3m=-3(2m+9) | | 2(3x+5)=-28+26 | | 2(6x+3)=3(3x-9 | | 3(-x-3)=4x+9-7x | | 3(-6+2j)=-2(2j-1) | | 1/2x-10=22 | | 2(3x+8)=-28+2 | | r+8.1=-3.9 | | 3+6d=7+6+8d | | 7+4y=-5,y= | | 8x−5=10x−7 | | 6z-3z-1=2z+7 | | 8x-5=10x-78x−5=10x−7 | | 11/5y-3=-2 |